

SQL SERVER
INTERVIEW QUESTION AND ANSWERS

Copyrights
SQL Server Simplified Interview Question and Answers

Copyright © 2021 by Vishal Garg. All rights reserved

All rights reserved. No portion of this book may be reproduced in any form
without permission from the publisher, except as permitted by copyright law.
For permissions contact:

vishgeek@gmail.com

About the Book
SQL Server Simplified interview questions is designed to help readers learn
the basic concepts of SQL Server.

This book covers all the concepts of SQL Server with the help of Interview
question and Answers.

Contents
Copyrights
About the Book
Q1. What are Temporary tables?
Q2. What are Temp variables?
Q3. What is Table valued parameter (TVP)?
Q4. Difference between Temporary variables and Temporary tables?
Q5. What are Sub-Queries?
Q6. What is a Common table expression (CTE)?
Q7. What are Types of CTE?
Q8. Difference between CTE and Temp Table?
Q9. What is a Stored Procedure?
Q10. How to optimize performance of stored procedure?
Q11. Why Stored Procedures and not SQL queries?
Q12. What are User Defined Functions (UDF)?
Q13. What are Guidelines for creating a Function?
Q14. What are types of Function?
Q15. How function can return a table?
Q16. Difference between Function and Stored Procedure?
Q17. What are Views?
Q18. What are advantages Views?
Q19. What are disadvantages Views?
Q20. Can we update table in Views?
Q21. What are different types of Views?
Q22. Difference between VIEWS and FUNCTIONS?
Q23.Types of Joins?
Q24. What are Indexes?
Q25. What are Different ways to create Indexes?
Q26. When Indexes should be avoided?
Q27. What are benefits of Indexes?
Q28. What are Types of Indexes?
Q29. Difference between clustered and nonclustered Indexes?
Q30. Difference between primary key and clustered index?
Q31. Can we create clustered index on unique key?
Q32. What is Partition By?

Q33. Difference between GroupBy and Partition By?
Q34. What are RANK, DENSE_RANK and ROW_NUMBER functions?

Q35. Find 2nd Highest salary using DENSE_RANK ()?
Q36. Query to delete duplicate data in table?
Q37. Difference between Truncate and Delete?
Q38. How to do Transaction and Rollback?
Q39. What are Triggers?
Q40. What are constraints available in Sql server?
Q41. What is UNIQUE key Constraint?
Q42. What is PRIMARY key Constraint?
Q43. Can we create multiple primary key on a table?
Q44. What is FOREIGN key Constraint?
Q45. How to create a FOREIGN key Constraint?
Q46. What is difference between PRIMARY and FOREIGN key constraint?
Q47. Difference between varchar and nvarchar?
Q48. What is Group By Clause?
Q49. What is Having Clause?
Q50. Write some Group By Queries?
Q51. What is Union operator?
Q52. What is UnionAll operator?
Q53. What is COALESCE?
Q54. Use of Substring and Charindex?
Q55. What is STUFF() Function?
Q56. What is an IDENTITY column?
Q57. Difference between SEQUENCE and IDENTITY?
About the Author
More Books by this Author

Q1. What are Temporary tables?

Temporary tables get created in the TempDB and are automatically deleted,
when they are no longer used.

There are 2 types of Temporary tables - Local Temporary tables and Global
Temporary tables.
Local Temporary tables -

A local temporary table is available, only for the
connection that has created the table.
To create a local Temporary table prefix the table name with 1
pound (#) symbol.
A local temporary table is automatically dropped, when the
connection that has created it, is closed.
To explicitly drop temp table: - DROP TABLE #tempEmployee
If the temporary table, is created inside the stored procedure,
it gets dropped automatically upon the completion of stored
procedure execution.

e.g.
create Procedure spCreateLocalTempTable
as
Begin
Create Table #tempEmployee(Id int, Name nvarchar(20))

Insert into #tempEmployee Values(1, 'Mike')
Insert into #tempEmployee Values(2, 'John')
Insert into #tempEmployee Values(3, 'Todd')

Select * from #tempEmployee
End

Note: Temporary table will be destroyed immediately after the completion of
the stored procedure execution.
execute spCreateLocalTempTable; // Will give the result set

Select * from #tempEmployee
// Error: Invalid object name '#tempEmployee'.

Global Temporary Table:

Global temporary tables are visible to all the connections and
are only destroyed when the last connection referencing the
table is closed.
To create a Global Temporary Table, prefix the name of the table
with 2 pound (##) symbols.
Multiple users, across multiple connections can have local
temporary tables with the same name, but, a global temporary
table name has to be unique

e.g.
Create Procedure spCreateGlobalTempTable
as
Begin
Create Table ##globalEmployee(Id int, Name nvarchar(20))

Insert into ##globalEmployee Values(1, 'Mike')
Insert into ##globalEmployee Values(2, 'John')
Insert into ##globalEmployee Values(3, 'Todd')

Select * from ##globalEmployee
End

// Execute procedure
execute spCreateGlobalTempTable // Will give the result set
Select * from ##globalEmployee // Success

Note: unlike Local temp tables, we can use global temp tables in other stored procedures as well.
Create Procedure spCreateGlobalTempTable2
as
Begin
Select * from ##globalEmployee
End
execute spCreateGlobalTempTable2 ;

//Note: it will run successfully and will give the desired results

Q2. What are Temp variables?

Temp Variables are also used for holding data temporarily just like
a temp table.

Temp Variables are created using a “DECLARE” statement and
are assigned values using either a SET or SELECT command.
This acts like a variable and exists for a particular batch of query
execution.
It gets dropped once it comes out of the batch.
This is also created in the tempdb database but not the memory.
This also allows you to create a primary key, identity at the time of
Table variable declaration but not non-clustered index.
We can implement all DML commands for Temp Variables.

e.g.
// Step1: Declare temp variable
Declare @My_vari TABLE
(

ID int,
Name Nvarchar(50),
Salary Int ,
City_Name Nvarchar(50)

)
//Step2: insert data
Insert Into @My_vari Values(1,'Mark',1000,'USA')
Insert Into @My_vari Values(2,'Steve',2000,'UK')
//Step3: Select data
select * from @My_vari

Q3. What is Table valued parameter (TVP)?
OR
How can we pass table as parameter to Stored Procedure?

Table Valued Parameter allows a table (i.e. multiple rows of data)
to be passed as a parameter to a stored procedure
Table valued parameters must be passed as read-only to stored
procedures, functions etc.
 You cannot perform DML operations like INSERT, UPDATE or
DELETE on a table-valued parameter in the body of a function,
stored procedure etc.

e.g.

Step 1 : Create User-defined Table Type
CREATE TYPE EmpTableType AS TABLE
(

Id INT PRIMARY KEY,
Name NVARCHAR(50),
Gender NVARCHAR(10)

)
Step 2: Use the User-defined Table Type as a parameter in the stored procedure.
CREATE PROCEDURE spInsertEmployees
@EmpTableType EmpTableType READONLY
AS
BEGIN

INSERT INTO Employees
SELECT * FROM @EmpTableType

END
Step 3: Declare a table variable, insert the data and then pass the table variable as a parameter to
the stored procedure.
DECLARE @EmployeeTableType EmpTableType

INSERT INTO @EmployeeTableType VALUES (1, 'Mark', 'Male')
INSERT INTO @EmployeeTableType VALUES (2, 'Mary', 'Female')
INSERT INTO @EmployeeTableType VALUES (3, 'John', 'Male')

EXECUTE spInsertEmployees @EmployeeTableType

Q4. Difference between Temporary variables and Temporary
tables?

Temporary variables Temporary tables
Scope: limited to the current batch
and current Stored Procedure

Scope: scope of a Temp Table is
wider than for Temp Variables.
Local temporary tables are
temporary tables that are available
only to the session that created them
and global temporary tables are
temporary tables that are available to
all sessions and all users.

Creation: Declared using Declare
statement only

Creation: Temp Tables can be
created using Create Table and
Select Into commands.

Drop and Truncate Command:
We cannot drop or truncate a Temp
variable

Drop and Truncate Command:
We can drop or truncate a Temp
Tables.

Constraint: a Temp Variable
doesn't support Foreign Keys.

Constraint: Temp Tables and Temp
Variables both support unique key,
primary key, check constraints, Not
null and default constraints

Q5. What are Sub-Queries?

A sub-query is a query within a query. It is also called an inner query or a
nested query. A sub-query is usually added in a where clause of the SQL
statement.
e.g.
Select Name,Age, employeeID
From employee
Where employeeID in
(

Select employeeID from salary where salary >=2000 --Sub Query
)

Whenever we refer the same data or join the same set of records using a sub-
query, the code maintainability will be difficult.

A CTE makes improved readability and maintenance easier.

Q6. What is a Common table expression (CTE)?

A Common Table Expression, also called as CTE in short form, is a
temporary named result set that you can reference within a SELECT,
INSERT, UPDATE, or DELETE statement. The CTE can also be used in a
View.

Syntax:

The CTE query starts with a “With” and is followed by the Expression Name
WITH expression_name [(column_name [,...n])]

AS
(CTE_query_definition)

// To view a CTE
Select * from expression_name

Advantages of CTE
CTE improves the code readability.
CTE provides recursive programming.
CTE makes code maintainability easier.

Q7. What are Types of CTE?

There are two types of CTEs: Recursive and Non-Recursive.

1. Non-Recursive CTEs

Non-Recursive CTEs are simple where the CTE doesn’t use any
recursion, or repeated processing in of a sub-routine.
e.g.

;with ROWCTE(ROWNO) as
(

SELECT ROW_NUMBER() OVER(ORDER BY name ASC) AS ROWNO
FROM sys.databases
WHERE database_id <= 10

)

SELECT * FROM ROWCTE

2. Recursive CTE

Recursive CTEs are use repeated procedural loops aka recursion. The
recursive query call themselves until the query satisfied the condition.
In a recursive CTE we should provide a where condition to terminate
the recursion.

With salaryCTE(EmployeeID)

AS

(Select employeeID from salary where salary >=1000)

, EmpDetailsCTE(Name, EmployeeID ,salary)

AS

(

Select Name,Age, employeeID

From employee Emp Join salaryCTE sa

on Emp. employeeID = sa. EmployeeID)

Q8. Difference between CTE and Temp Table?

CTE Temp table
CTE stands for Common Table
Expressions. It is a temporary
result set and typically it may be a
result of complex sub-query.

Temporary tables are created at run-
time and you can do all the
operations which you can do on a
normal table. These tables are
created inside the Tempdb database.

Scope: Unlike the temporary table,
its life is limited to the current
query.
It is defined by using WITH
statement.

Scope : Based on the scope and
behavior temporary tables are of two
types :
Local Temp Table:
Local temp tables are only available
to the SQL Server session or
connection (means single user) that
created the tables. These are
automatically deleted when the
session that created the tables has
been closed. The local temporary
table name starts with a single hash
("#") sign.

Global Temp Table:
Global temp tables are available to

all SQL Server sessions or
connections (means all the user).
These can be created by any SQL
Server connection user and these are
automatically deleted when all the
SQL Server connections have been
closed. The global temporary table
name is stared with double hash
("##") sign.

Syntax :
WITH cte (Column1, Column2, Column3)
AS
(

SELECT Column1, Column2, Column3
FROM SomeTable

)

SELECT * FROM cte

Syntax :
CREATE TABLE #tmpTable
(
Column1 int,
Column2 varchar(50),
Column3 varchar(150)

)
GO
insert into #tmpTable values (1, '2','3');
GO
Select * from #tmpTable

Persist only until the next query is
run

Persist for the life of the current
CONNECTION

Usage: This is used to store the
result of a complex subquery for
further use.

Usage: We required to hold data
from further query.

Q9. What is a Stored Procedure?

Stored Procedure

A Stored Procedure is nothing more than prepared SQL code that you save so
you can reuse the code over and over again. Instead of having to write the
query each time you would save it as a Stored Procedure and then just call the
Stored Procedure to execute the SQL code that you saved as part of the
Stored Procedure.

Benefits of Stored Procedures
Precompiled execution

SQL Server compiles each Stored Procedure once and then
reutilizes the execution plan. This results in tremendous
performance boosts when Stored Procedures are called repeatedly.

Reduced client/server traffic

if network bandwidth is a concern in your environment then you'll
be happy to learn that Stored Procedures can reduce long SQL
queries to a single line that is transmitted over the wire.

Efficient reuse of code and programming abstraction

Stored Procedures can be used by multiple users and client
programs. If you utilize them in a planned manner then you'll find
the development cycle requires less time.

Enhanced security controls

you can grant users permission to execute a Stored Procedure
independently of underlying table permissions.

Syntax:
// Creating a Stored procedure

CREATE PROCEDURE procedure_name
AS
sql_statement
GO;

// Running a Stored procedure
EXEC procedure_name;

e.g.
// Creating a Stored procedure with multiple parameters
CREATE PROCEDURE Proc_Employees @Name nvarchar(30), @EmpId nvarchar(10)
AS
SELECT * FROM Employees WHERE Name = @Name AND EmpId = @EmpId
GO;

// Running a Stored procedure with multiple parameters

EXEC Proc_Employees @Name = 'Mike', @EmpId = '100';

Q10. How to optimize performance of stored procedure?

1. Use fully qualified procedure name
A fully qualified object name is database.schema.objectname. When
stored procedure is called as schemaname.procedurename, SQL Server
can swiftly find the compiled plan instead of looking for procedure in
other schemas when schemaname is not specified.

E.g. SELECT EmpID, EmpName, EmpSalary FROM dbo.Employee

2. Use If Exists to check if record exists in table or not

If Exists function is used to check if record exists in a table or not. If any
records are found then it will return true, else it will return false. One
benefit of using If Exists function is that if any match is found then it
will stop execution and return true so it will not process the remaining
records, so that will save time and improve performance.

E.g. IF (EXISTS (SELECT 1 FROM db.Employees))

3. Specify column names instead of using * in SELECT
statement

4. Create Proper Index
 Proper indexing will improve the speed of the operations in the database.

5. Use Join query instead of sub-query
Using JOIN is better for the performance than using subqueries or
nested queries

6. Set NOCOUNT ON statement at beginning of
Store procedure SET NOCOUNT ON
will not return the how many rows are affected message. If we are
not using SET NOCOUNT ON statement, then it will print a

message for how many rows are affected. It means if we do not use
this then it will print an extra message and it affects performance.

Q11. Why Stored Procedures and not SQL queries?

Performance: A stored procedure is cached in the server memory
and its execution is much faster than SQL Query.
Network Traffic : Stored procedures produce less network traffic
then SQL queries because executing a stored procedure requires
only the procedure name and parameters (if any) to be sent over
the network. Executing dynamic SQL requires the complete query
to be sent across the network, increasing network traffic,
particularly if the query is very large.
SQL Injection Attacks: Stored procedures are not vulnerable to
SQL Injection attacks.
Reusability of Cached Query Plans: Stored procedures improve
database performance as they allow cached query plans to be
reused.

Q12. What are User Defined Functions (UDF)?

User Defined Functions
Like functions in programming languages, SQL Server User Defined
Functions are routines that accept parameters, perform an action such as a
complex calculation, and returns the result of that action as a value. The
return value can either be a single scalar value or a result set.

Benefits of User Defined Functions
They allow modular programming
you can create the function once, store it in the database, and call it
any number of times in your program. User Defined Functions can
be modified independently of the program source code.

They can reduce network traffic

an operation that filters data based on some complex constraint
that cannot be expressed in a single scalar expression can be
expressed as a function. The function can then invoked in the
WHERE clause to reduce the number or rows sent to the client.

e.g.:
CREATE FUNCTION func_info (

@city nvarchar(10)
)
RETURNS TABLE AS
RETURN

SELECT *
FROM dbo.persons
WHERE city = @city;

//Executing a function
SELECT * from dbo.func_info('lon')

Q13. What are Guidelines for creating a Function?

SQL Server Functions are useful objects in SQL Server databases. A SQL
Server function is a code snippet that can be executed on a SQL Server.
Here are some of the rules when creating functions in SQL Server.

1. A function must have a name and a function name can never start
with a special character such as @, $, #, and so on.

2. Functions only work with select statements.
3. Functions can be used anywhere in SQL, like AVG, COUNT,

SUM, MIN, DATE and so on with select statements.
4. Functions compile every time.
5. Functions must return a value or result.
6. Functions only work with input parameters.
7. Try and catch statements are not used in functions.

Q14. What are types of Function?

SQL Server supports two types of functions:
1. User-Defined function: User-defined functions are create by a user.
2. System Defined Function: System functions are built-in database

functions.
User-Defined Functions

 SQL Server supports two types of user-defined functions:
1. Table-Valued Functions
2. Scalar Valued Functions

1. Table-Valued Functions
In this type of function, we select a table data using a user-created function. A
function is created using the Create function SQL command.

e.g.
Create function Fun_FuncName()
returns table
AS
return(select * from Employee)

2. Scalar function
Now we are getting a table with two different data joined and displayed in a
single column data row.
create function func_EmployeeInfo
(

@EmpContact nchar(15),
@EmpEmail nvarchar(50),
@EmpCity varchar(30)

)
returns nvarchar(100)
AS
begin return(select @EmpContact+ ' ' +@EmpEmail + ' ' + @EmpCity)
end

Q15. How function can return a table?

A table-valued function is a user-defined function that returns data of a table
type. The return type of a table-valued function is a table, therefore, you can
use the table-valued function just like you would use a table.

E.g.
CREATE FUNCTION func_Employee(

@empId INT
)
RETURNS TABLE
AS
RETURN

SELECT
Name,
Address,
Salary

FROM
Dev.Employee

WHERE
empId = @empId;

--Calling Function
SELECT

Name,
Salary

FROM
func_Employee(20);

Note: We typically use table-valued functions as parameterized views.

Q16. Difference between Function and Stored Procedure?

Function Stored Procedure
A function has a return type and
returns a value.

A procedure does not have a return
type. But it returns values using the
OUT parameters.

You cannot use a function with Data
Manipulation queries. Only Select
queries are allowed in functions.

You can use DML queries such as
insert, update, select etc… with
procedures.

A function does not allow output
parameters

A procedure allows both input and
output parameters.

You cannot manage transactions
inside a function.

You can manage transactions inside
a SP.

You cannot call stored procedures
from a function

You can call a function from a
stored procedure.

You can call a function using a
select statement.

You cannot call a procedure using
select statements.

Q17. What are Views?

The views are a compiled SQL query.
Consider the Views as virtual tables.
As a virtual table, the Views do not store any data physically by
default.
when we query a view it actually gets the data from the underlying
database tables
Views in SQL Server act as an interface between the Table(s) and
the user.
Views can also be used to perform DML operations like insert,
update and delete data from a table

Syntax:
CREATE VIEW VIEW_NAME AS
SELECT column1, column2, column3.......
FROM table_name WHERE [condition];

--E.g.
CREATE VIEW DEPT_VIEW AS
SELECT EMPLOYEE.ID, EMPLOYEE.NAME, DEPARTMENT.DEPTNAME
FROM EMPLOYEE, DEPARTMENT
WHERE EMPLOYEE.ID = DEPARTMENT.ID;
SELECT * FROM DEPT_VIEW;
--Insert into View
INSERT INTO view_name(column1, column 2, column3,....) VALUES(value1, value2, value3,...);
--Delete from view
DELETE FROM view_name WHERE [condition];
--Drop view
DROP VIEW view_name;

Q18. What are advantages Views?

Security: Each user can be given permission to access the
database only through a small set of views that contain the specific
data the user is authorized to see, thus restricting the user's access
to stored data
Query Simplicity: A view can draw data from several different
tables and present it as a single table, turning multi-table queries
into single-table queries against the view.
Views don’t take space: Views are used to store your code, not
complete tables. Each time you call a view, you’ll run the related
query. Therefore, you don’t lose disk space on views

Q19. What are disadvantages Views?

Performance: Views create the appearance of a table, but the
DBMS must still translate queries against the view into queries
against the underlying source tables. If the view is defined by a
complex, multi-table query then simple queries on the views may
take considerable time.
Database changes: One of the major disadvantages of using view
comes into the picture when we change the table structures
frequently upon which the view is created. So when the table
structures are changed, the view also needs to be changed.

Q20. Can we update table in Views?

The SQL UPDATE VIEW command can be used to modify the data of a
view. An updatable view is one which allows performing a UPDATE
command on itself without affecting any other table.

Following are conditions to update a View:

1. The view is defined based on one and only one table.

2. The view must include the PRIMARY KEY of the table based
upon which the view has been created.

3. The view should not have any field made out of aggregate
functions.

4. The view must not have any DISTINCT clause in its definition.
5. The view must not have any GROUP BY or HAVING clause in its

definition.
6. The view must not have any SUBQUERIES in its definitions.
7. If the view you want to update is based upon another view, the

later should be updatable.
8. Any of the selected output fields (of the view) must not use

constants, strings or value expressions.

Issue: Though we would get error if we try to update view having multiple
tables.

When we execute the view having multiple tables it gives us the error
as ‘View or function [view name] is not updatable because the
modification affects multiple base tables. ‘

Solution: We can overcome this issue by using [INSTEAD OF UPDATE]
trigger.

Q21. What are different types of Views?

There are two types of views in SQL Server, they are

1. Simple view or Updatable views: The view that is created based on
the columns of a single table, then it is known as a simple view. We
can perform all the DML operations on a simple view so that a
simple view can also be called an updatable view or dynamic view.

Note: A view that is created based on a single table will also be
considered as a complex view provided if the query contains any of the

following.
Distinct. Aggregate Function, Group By Clause, having Clause,
calculated columns, and set operations.

2. Complex view or non-updatable views: When we create a view on
more than 1 table then it is known as a complex view and on a
complex view, we cannot perform DML operations so that a complex
view is also called the non-updatable or static view.

Q22. Difference between VIEWS and FUNCTIONS?

VIEWS FUNCTIONS
Views can be used to perform
DML operations like insert, update
and delete data from a table

You cannot use a function with Data
Manipulation queries. Only Select
queries are allowed in functions.

Views cannot accepts parameters User-Defined Function can accept
parameters

We cannot use output of Views in
the SELECT clause

output of the User Defined Function
can be directly used in the SELECT
clause

Q23.Types of Joins?
There are different types of joins used in SQL:

1. Inner Join
2. Left Outer Join/Left Join
3. Right Outer Join/Right Join
4. Full Outer Join
5. Cross Join
6. Self Join

Inner Join
The inner join is used to select all matching rows or columns in both tables

Syntax:

SELECT column_name(s)
FROM table1
INNER JOIN table2
ON table1.column_name = table2.column_name;

LEFT JOIN
The Left Join is used to retrieve all records from the left table (table1) and the
matched rows or columns from the right table (table2). If both tables do not
contain any matched rows or columns, it returns the NULL.

Syntax:

SELECT column_name(s)
FROM table1
LEFT JOIN table2
ON table1.column_name = table2.column_name;

RIGHT JOIN or RIGHT Outer JOIN:
The Right Join is used to retrieve all records from the right table (table2) and

the matched rows or columns from the left table (table1). If both tables do not
contain any matched rows or columns, it returns the NULL.

Syntax:

SELECT column_name(s)
FROM table1
RIGHT JOIN table2
ON table1.column_name = table2.column_name;

FULL JOIN or FULL Outer JOIN:
It is a combination result set of both LEFT JOIN and RIGHT JOIN. The
joined tables return all records from both the tables and if no matches are
found in the table, it places NULL. It is also called a Full Outer Join.

Syntax:
SELECT column_name(s)
FROM table1

FULL OUTER JOIN table2
ON table1.column_name = table2.column_name
WHERE condition;

CROSS JOIN
It is also known as CARTESIAN JOIN, which returns the Cartesian product
of two or more joined tables. The Cross Join produces a table that merges
each row from the first table with each second table row. It is not required to
include any condition in CROSS JOIN.
Syntax:

SELECT * FROM [TABLE1] CROSS JOIN [TABLE2]

OR

SELECT * FROM [TABLE1] , [TABLE2]

Self Join
A self join is a regular join, but the table is joined with itself.

Syntax:

SELECT column_name(s)
FROM table1 T1, table1 T2
WHERE condition;

Q24. What are Indexes?
Indexes are special lookup tables that the database search engine can use to
speed up data retrieval. Simply put, an index is a pointer to data in a table.

An index helps to speed up SELECT queries and WHERE clauses, but it
slows down data input, with the UPDATE and the INSERT statements.

Indexes can also be unique, like the UNIQUE constraint, in that the index
prevents duplicate entries in the column or combination of columns on which
there is an index.

Syntax:
CREATE INDEX index_name ON table_name;

Q25. What are Different ways to create Indexes?

We can have following type of indexes:

Single-Column Indexes
A single-column index is created based on only one table column. The basic
syntax is as follows.
CREATE INDEX index_name
ON table_name (column_name);

Unique Indexes
Unique indexes are used not only for performance, but also for data
integrity. A unique index does not allow any duplicate values to be inserted
into the table. The basic syntax is as follows.
CREATE UNIQUE INDEX index_name
ON table_name (column_name);

Composite Indexes
A composite index is an index on two or more columns of a table. Its basic
syntax is as follows.
CREATE INDEX index_name
ON table_name (column1, column2);

Note: Should there be only one column used, a single-column index should
be the choice. Should there be two or more columns that are frequently used
in the WHERE clause as filters, the composite index would be the best
choice.

Implicit Indexes
Implicit indexes are indexes that are automatically created by the database
server when an object is created. Indexes are automatically created for
primary key constraints and unique constraints.

Q26. When Indexes should be avoided?

Indexes should not be used on small tables.
Tables that have frequent, large batch updates or insert

operations.
Indexes should not be used on columns that contain a high

number of NULL values.
Columns that are frequently manipulated should not be indexed.

Q27. What are benefits of Indexes?

Indexes are used to speed-up query process in SQL Server,
resulting in high performance
Without indexes, a DBMS has to go through all the records in the
table in order to retrieve the desired results. This process is called
table-scanning and is extremely slow.
If you create indexes, the database goes to that index first and then
retrieves the corresponding table records directly.

Q28. What are Types of
Indexes?
There are two types of Indexes in SQL Server:

1. Clustered Index
2. Non-Clustered Index

Clustered Index
A clustered index defines the order in which data is physically
stored in a table.
Table data can be sorted in only way, therefore, there can be only
one clustered index per table.
In SQL Server, the primary key constraint automatically creates a
clustered index on that particular column.
A B-Tree (computed) clustered index is the index that will arrange
the rows physically in the memory in sorted order.
An advantage of a clustered index is that searching for a range of
values will be fast. A clustered index is internally maintained
using a B-Tree data structure leaf node

e.g.
CREATE CLUSTERED INDEX index_custom
ON TableName(Column1 ASC, Column2 DESC)

Non-Clustered Indexes
A non-clustered index doesn’t sort the physical data inside the
table.
A non-clustered index is stored at one place and table data is
stored in another place. This is similar to a textbook where the
book content is located in one place and the index is located in
another.
This allows for more than one non-clustered index per table. You
can create a maximum of 999 non-clustered indexes on a table
The index contains column values on which the index is created
and the address of the record that the column value belongs to.
When a query is issued against a column on which the index is
created, the database will first go to the index and look for the
address of the corresponding row in the table. It will then go to
that row address and fetch other column values. It is due to this
additional step that non-clustered indexes are slower than
clustered indexes.
A non-clustered index is also maintained in a B-Tree data structure
but leaf nodes of a B-Tree of non-clustered index contains the
pointers to the pages that contain the table data and not the table
data directly.

Syntax:
CREATE NONCLUSTERED INDEX index_custom
ON TableName(Column1 ASC)

Q29. Difference between clustered and nonclustered
Indexes?

Clustered Nonclustered
There can be only one clustered
index per table.

You can create multiple non-
clustered indexes on a single table.

Clustered indexes only sort tables.
Therefore, they do not consume
extra storage.

Non-clustered indexes are stored in a
separate place from the actual table
claiming more storage space.

Clustered indexes are faster than
non-clustered indexes since they
don’t involve any extra lookup
step.

NonClustered indexes are slower as
they have extra lookup step.

Q30. Difference between primary key and clustered index?

Primary key is unique identifier for record. It's responsible for unique value
of this field. And clustered index is data structure that improves speed of
data retrieval operations through an access of ordered records.

Q31. Can we create clustered index on unique key?

Yes, we can create Clustered index on unique key

E.g.
CREATE TABLE Employee (

ID int UNIQUE,
LastName varchar(25) NOT NULL,
FirstName varchar(25),
Age int

);
CREATE clustered index in_empId on Employee (ID);

Sorting order and null values handling –

In this case all the data will be inserted in sorted order NULL values can also
be inserted.

Q32. What is Partition By?

We can use the SQL PARTITION BY clause with the OVER clause to
specify the column on which we need to perform aggregation.
e.g.

SELECT Customercity,
AVG(Orderamount) OVER(PARTITION BY Customercity) AS AvgOrderAmount,

MIN(OrderAmount) OVER(PARTITION BY Customercity) AS MinOrderAmount,
SUM(Orderamount) OVER(PARTITION BY Customercity) TotalOrderAmount

FROM [dbo].[Orders];

We get an error message if we try to add a column that is not a part of the
GROUP BY clause.

We can add required columns in a select statement with the SQL
PARTITION BY clause.

e.g.
SELECT Customercity,

CustomerName,
OrderAmount,
AVG(Orderamount) OVER(PARTITION BY Customercity) AS AvgOrderAmount,
MIN(OrderAmount) OVER(PARTITION BY Customercity) AS MinOrderAmount,
SUM(Orderamount) OVER(PARTITION BY Customercity) TotalOrderAmount

FROM [dbo].[Orders];

PARTITION BY clause with ROW_NUMBER()
We can use the SQL PARTITION BY clause with ROW_NUMBER()
function to have a row number of each row. We define the following
parameters to use ROW_NUMBER with the SQL PARTITION BY clause.

PARTITION BY column – In this example, we want to partition
data on CustomerCity column
Order By: In the ORDER BY column, we define a column or
condition that defines row number. In this example, we want to
sort data on the OrderAmount column

SELECT Customercity,
CustomerName,
ROW_NUMBER() OVER(PARTITION BY Customercity ORDER BY OrderAmount

DESC) AS "Row Number",
OrderAmount,
COUNT(OrderID) OVER(PARTITION BY Customercity) AS CountOfOrders,
AVG(Orderamount) OVER(PARTITION BY Customercity) AS AvgOrderAmount,
MIN(OrderAmount) OVER(PARTITION BY Customercity) AS MinOrderAmount,
SUM(Orderamount) OVER(PARTITION BY Customercity) TotalOrderAmount

FROM [dbo].[Orders];

Q33. Difference between GroupBy and Partition By?

GroupBy Partition By
We get a limited number of records
using the Group By clause

We get all records in a table using
the PARTITION BY clause.

It gives one row per group in result
set.

It gives aggregated columns with
each record in the specified table.

Q34. What are RANK, DENSE_RANK and ROW_NUMBER
functions?

Increasing integer value: The RANK, DENSE_RANK and
ROW_NUMBER functions are used to get the increasing integer
value, based on the ordering of rows by imposing ORDER BY
clause in SELECT statement.
ORDER BY: When we use RANK, DENSE_RANK or
ROW_NUMBER functions, the ORDER BY clause is required
and PARTITION BY clause is optional.
PARTITION BY: When we use PARTITION BY clause, the
selected data will get partitioned, and the integer value is reset to 1
when the partition changes.

e.g.

RANK (): - next incremented rank
In RANK function, the next row after the duplicate values (salary),marked in
red color, will not give the integer value as next rank but instead of it, it skips
those ranks and gives what is the
next incremented rank.

DENSE_RANK (): - next rank in sequence/not skip any rank
In DENSE_RANK function, it will not skip any rank. This means the next
row after the duplicate value (salary) rows will have the next rank in the
sequence.

Benefits of RANK () and DENSE_RANK ():
Using RANK or DENSE_RANK function, we can find nth highest salary.

Q35. Find 2nd Highest salary using DENSE_RANK ()?
with tempSal as
(

select *,DENSE_RANK() over (order by salary desc) as _rank from EmployeeTable
)
select top 1 salary from tempsal where _rank = 2;

OR

SELECT TOP 1 Salary
FROM (

SELECT DISTINCT TOP N Salary
FROM Employee
ORDER BY Salary DESC
) AS Emp

ORDER BY Salary

Q36. Query to delete duplicate data in table?

Using ROW_NUMBER function, we can delete duplicate data from table
with empCTE as
(
select *, ROW_NUMBER() over(partition by EMPID order by EMPID) as rowno from Employee
)
delete from empCTE where rowno>1

Q37. Difference between Truncate and Delete?

Delete Truncate
The DELETE command is used to
delete specified rows (one or more).

While this command is used to
delete all the rows from a table.

It is a DML (Data Manipulation
Language) command.

While it is a DDL (Data Definition
Language) command.

There may be WHERE clause in
DELETE command in order to filter
the records.

While there may not be WHERE
clause in TRUNCATE command.

DELETE command is slower than
TRUNCATE command.

While TRUNCATE command is
faster than DELETE command.

To use Delete you need DELETE
permission on the table.

To use Truncate on a table we need
at least ALTER permission on the
table.

Syntax:
DELETE FROM TableName
WHERE condition;

Syntax:
TRUNCATE TABLE TableName;

DELETE operations can be rolled
back

TRUNCATE operations cannot be
rolled back

Q38. How to do Transaction and Rollback?

Transaction

Transactions in SQL Server are used to execute a set of SQL
statements in a group. With transactions, either all the statements
in a group execute or none of the statements execute.
To start a transaction, the BEGIN TRANSACTION statement is
used, followed by the set of queries that you want to execute inside
the transaction. To mark the end of a transaction, the COMMIT
TRANSACTION statement can be used.

Rollback

The rollback SQL statement is used to manually rollback transactions in MS
SQL Server.
In the case where one of the queries in a group of queries executed by a
transaction fails, all the previously executed queries are roll backed.
Transactions in the SQL server are roll backed automatically. However, with
the rollback SQL statement, you can manually rollback a transaction based
on certain conditions.

E.g.
BEGIN TRANSACTION

INSERT INTO Employee
VALUES (1, 'Frank', 'USA', 1000)

UPDATE Employee
SET salary = '25 Hundred' WHERE id = 1

DELETE from Employee
WHERE id = 1

COMMIT TRANSACTION

Note: Since the queries are being executed inside a transaction, the failure of
the second query will cause all the previously executed queries to rollback.

Manually rollback SQL transactions
Transactions automatically rollback themselves if one of the queries cannot
be executed successfully. However, you may want to rollback a query based
on certain conditions as well.

E.g.
DECLARE @EmpCount int

BEGIN TRANSACTION AddEmployee

INSERT INTO Employee
VALUES (1, 'Frank', 'USA', 1000)

SELECT @EmpCount = COUNT(*) FROM Employee WHERE name = 'Frank'

IF @EmpCount > 1
BEGIN

ROLLBACK TRANSACTION AddEmployee
PRINT 'An employee with the same name already exists'

END
ELSE

BEGIN
COMMIT TRANSACTION AddEmployee
PRINT 'New Employee added successfully'

END

Q39. What are Triggers?

A trigger is a special kind of Stored Procedure that is automatically fired or
executed when some event (insert, delete and update) occurs.

When to use a trigger

We use a trigger when we want some event to happen automatically on
certain desirable scenarios.

Types of Triggers

We can create the following 3 types of triggers:
Data Definition Language (DDL) triggers
Data Manipulation Language (DML) triggers
Logon triggers

DDL Triggers

 In SQL Server we can create triggers on DDL statements (like CREATE,
ALTER and DROP) and certain system-defined Stored Procedures that does
DDL-like operations.

DML Triggers

In SQL Server we can create triggers on DML statements (like INSERT,
UPDATE and DELETE) and Stored Procedures that do DML-like operations.
DML Triggers are of two types.

After trigger (using FOR/AFTER CLAUSE)

The After trigger (using the FOR/AFTER CLAUSE) fires after SQL
Server finishes the execution of the action successfully that fired it.

Instead of Trigger (using INSTEAD OF CLAUSE)

The Instead of Trigger (using the INSTEAD OF CLAUSE) fires before
SQL Server starts the execution of the action that fired it.

Logon Triggers

Logon triggers are a special type of triggers that fire when a
LOGON event of SQL Server is raised. This event is raised when
a user session is being established with SQL Server that is made
after the authentication phase finishes, but before the user session
is actually established.
We can use these triggers to audit and control server sessions, such
as to track login activity or limit the number of sessions for a
specific login.

 Syntax:
CREATE TRIGGER triggerName ON table
AFTER INSERT |After Delete |After Upadte
AS BEGIN

INSERT INTO dbo.Employee............
END

Q40. What are constraints available in Sql server?

SQL Server supports six types of constraints for maintaining data integrity.
They are as follows

1. Default Constraint
2. UNIQUE KEY constraint
3. NOT NULL constraint
4. CHECK KEY constraint
5. PRIMARY KEY constraint
6. FOREIGN KEY constraint.

Q41. What is UNIQUE key Constraint?

To avoid duplicate values on columns we apply UNIQUE
Constraint
That means the UNIQUE constraint is used to avoid duplicate
values but it accepts a single NULL value in that column.
A table can contain any number of UNIQUE constraints.
We can apply the UNIQUE constraint on any data type column
such as integer, character, money, etc.

CREATE TABLE Customer
(

Id INT UNIQUE,
NAME VARCHAR(30) UNIQUE,
Emailid VARCHAR(100) UNIQUE

)

Q42. What is PRIMARY key Constraint?

The Primary Key is the combination of Unique and Not Null
Constraint
It will not allow either NULL or Duplicate values
A table should contain only 1 Primary Key which can be either on
a single or multiple columns i.e. the composite primary key.

CREATE TABLE Customer
(

Id INT PRIMARY KEY,
NAME VARCHAR(30),
Emailid VARCHAR(100)

)

Q43. Can we create multiple primary key on a table?

A table can have only one PRIMARY KEY either on one column or
multiple columns. When multiple columns are defined as PRIMARY KEY,
then, it is called COMPOSITE KEY.

PRIMARY KEY is a constraint in SQL which is used to identify
each record uniquely in a table.
By default, PRIMARY KEY is UNIQUE.
PRIMARY KEY can’t have null values.
If we try to insert/update duplicate values for the PRIMARY KEY
column, then, the query will be aborted.

Syntax (Primary key):
CREATE TABLE table_name
(
column_name1 data_type(size) PRIMARY KEY,
column_name2 data_type(size) NOT NULL,
column_name3 data_type(size),
etc…
)

Syntax (Composite key):
CREATE TABLE table_name
(
column_name1 data_type(size) NOT NULL,

column_name2 data_type(size) NOT NULL,
column_name3 data_type(size),
CONSTRAINT Constraint_name PRIMARY KEY (column_name1, column_name2)
etc…
);

Q44. What is FOREIGN key Constraint?

In order to create a link between two tables, we must specify a
Foreign Key in one table that references a column in another table.
Foreign Key constraint is used for binding two tables with each
other and then verify the existence of one table data in other tables.
A foreign key in one TABLE points to a primary key or unique
key in another table. The foreign key constraints are used to
enforce referential integrity.

Q45. How to create a FOREIGN key Constraint?

Two tables must have a common column for linking the tables.
Common Column name need not be same but data type should be
same
The common column that is present under the parent table or
master table is known as the reference key column and moreover,
the reference key column should not contain any duplicate values.
So we need to impose either UNIQUE or PRIMARY key
constraint on that column.
The common column which is present in the child or detailed table
is known as the Foreign key column and we need to impose a
Foreign key constraint on the column which refers to the reference
key column of the master table.

Syntax (At column level):
CREATE TABLE Employee
(

Empid INT,
Ename VARCHAR(40),
Job VARCHAR(30),

Salary MONEY,
Deptno INT CONSTRAINT deptn0_fk REFERENCES Dept(Dno)

)

Syntax (At table level):
CREATE TABLE Employee
(

Empid INT,
Ename VARCHAR(40),
Job VARCHAR(30),
Salary MONEY,
Deptno INT,
CONSTRAINT deptno_fk FOREIGN KEY (Deptno) REFERENCES Dept(Dno)

)

3 Rules should be kept in mind while creating foreign key constraint:

1. Rule1: Cannot insert a value into the foreign key column provided
that value is not existing in the reference key column of the
parent (master) table.

2. Rule2: Cannot update the reference key value of a parent table
provided that the value has a corresponding child record in the
child table without addressing what to do with the child records.

3. Rule3: Cannot delete a record from the parent table provided that
records reference key value has child record in the child table
without addressing what to do with the child record.

Q46. What is difference between PRIMARY and FOREIGN
key constraint?

Primary key Foreign key
uniquely identifies a record in the
table

The Foreign Key is a field in a table
that is a unique key in another table

Primary Key constraint neither
accepts null values nor duplicate
values

can accept both null values and
duplicate values

By default Primary Key Constraint
create a unique clustered index that
will physically organize the data in
the table.

By default, the foreign key does not
create any index. If you need then
you can create an index on the
foreign key column manually.

We can create only one Primary
Key on a table. Though you can
create the primary key either on a
single column or multiple columns.

We can create more than one
Foreign key on a table

Q47. Difference between varchar and nvarchar?

varchar Nvarchar
It is a variable-length data type
(dynamic data type) and will store
the character in a non-Unicode
manner that means it will take 1
byte for 1 character.

It is a variable-length data type and
will store the data type in the
Unicode manner that means it will
occupy 2bytes of memory per single
character.

The maximum length of the varchar
data type is from 1 to 8000 bytes

The maximum length of nvarchar
data type is from up to 4000 bytes.

Q48. What is Group By Clause?

The Group by Clause in SQL Server is used to divide the similar
type of records or data as a group and then return.
If we use group by clause in the query then we should use
grouping/aggregate function such as count(), sum(), max(), min(),
avg() functions.
First Group By clause is used to divide similar types of data as a
group and then an aggregate function is applied to each group to
get the required results.
When we use multiple columns in a group by clause first data in
the table is divided based on the first column of the group by

clause and then each group is subdivided based on the second
column of the group by clause and then the group function is
applied on each inner group to get the result.

Syntax:
SELECT expression1, expression2, expression_n,

aggregate_function (expression)
FROM tables
GROUP BY expression1, expression2, expression_n;

Note*: expression1, expression2, expression_n: The expressions that are not encapsulated within
an aggregate function must be included in the GROUP BY clause.

Q49. What is Having Clause?

The Having Clause is used for filtering the data just like the where clause.

Syntax:
SELECT expression1, expression2, expression_n,

aggregate_function (expression)
FROM tables
[WHERE conditions]
GROUP BY expression1, expression2, expression_n
HAVING having_condition;

Q50. Write some Group By Queries?

Query to get the number of employees working in each Gender per
each department.
SELECT Department, Gender, EmployeeCount = COUNT(*)
FROM Employee
GROUP BY Department, Gender
ORDER BY Department

Query to find total salary in each department
SELECT Department, TotalSalary = SUM(Salary)
FROM Employee
GROUP BY Department

Find the highest salary in each department in the organization.
SELECT Department, MaxSalary = MAX(SALARY)

FROM Employee
GROUP BY Department

Get the number of employees working in each Gender per each
department.
SELECT Department, Gender, EmployeeCount = COUNT(*)
FROM Employee
GROUP BY Department, Gender
ORDER BY Department

Query for retrieving total salaries by the city.
SELECT CITY, SUM(Salary) as TotalSalary
FROM Employee
GROUP BY CITY

Query for retrieving total salaries and the total number of employees
by City, and by gender.
SELECT City, Gender, SUM(Salary) as TotalSalary,

COUNT(ID) as TotalEmployees
FROM Employee
GROUP BY CITY, Gender

Q51. What is Union operator?

The UNION operator is used to combine the result-set of two or
more SELECT statements.
Every SELECT statement within UNION must have the same
number of columns
The columns must also have similar data types
The columns in every SELECT statement must also be in the same
order

Syntax:
SELECT column_name(s) FROM table1
UNION
SELECT column_name(s) FROM table2;

Q52. What is UnionAll operator?

The UNION operator selects only distinct values by default. To allow
duplicate values, use UNION ALL.

Syntax:
SELECT column_name(s) FROM table1
UNION ALL
SELECT column_name(s) FROM table2;

Q53. What is COALESCE?

COALESCE is used to return first non-null expression within the arguments.
This function is used to return a non-null from more than one column in the
arguments.

e.g.
Select COALESCE(empno, empname, salary) from employee;

Q54. Use of Substring and Charindex?

The SUBSTR function is used to return specific portion of string in a given
string. But, CHARINDEX function gives character position in a given
specified string.

SUBSTRING(expression, starting position, length)
select SUBSTRING('Steve',1,3)
// output : Ste

CHARINDEX(expression varchar(1), expression varchar(1),
start_location int)
select CHARINDEX('v', 'Steve',3)
//output: 4

Q55. What is STUFF() Function?

The STUFF() function deletes a part of a string and then inserts another part
into the string, starting at a specified position.

Syntax:
STUFF(string, start, length, new_string)

string Required. The string to be modified
start Required. The position in string to start to delete some

characters
l ength Required. The number of characters to delete from string
new_string Required. The new string to insert into string at the start

position

e.g.
SELECT STUFF('This is.', 8, 1, ' Test');
//Output : This is Test

Q56. What is an IDENTITY column?

IDENTITY column is used in table columns to make that column as Auto
incremental number.

Q57. Difference between SEQUENCE and IDENTITY?

Sequence object is similar to the Identity property, in the sense
that it generates sequence of numeric values in an ascending order
just like the identity property.
Identity property is a table column property meaning it is tied to
the table, whereas the sequence is a user-defined database object
and is not tied to any specific table meaning its value can be
shared by multiple tables.

e.g.
// IDENTITY
CREATE TABLE Employees
(

Id INT PRIMARY KEY IDENTITY(1,1),

Name NVARCHAR(50),
Gender NVARCHAR(10)

)
// SEQUENCE
CREATE SEQUENCE [dbo].[SequenceObject]
AS INT
START WITH 1
INCREMENT BY 1

// Insert data
INSERT INTO Customers VALUES

(NEXT VALUE for [dbo].[SequenceObject], 'Mike', 'Male')

INSERT INTO Users VALUES
(NEXT VALUE for [dbo].[SequenceObject], 'Steve', 'Male')

About the Author

Vishal Garg is a technical writer with a passion for writing technical books.
He has passion for learning new technologies and share the knowledge with
everyone. He is well versed in technologies like SQL Server, Azure, Devops,
Angular, .Net core, Web API, C# etc. He also shares his knowledge with the
community through book writings, blog writings, presentations etc.
He has written books on different technologies as well and got a positive
reviews on that. He followed a very unique way to cover all major concepts.

With the help of various surveys and real time experience a question bank of
a particular topic are compiled and logged in a book.

He is hoping that all readers will be benefited from this book and looking
forward to put in more effort to produce quality books in future.

Note: If you like the book, please take some time to put in positive reviews
on Amazon website. This feedback will encourage him to produce more
quality books in future.

More Books by this Author

.Net Core Simplified: Interview QA

Angular Simplified: Learning made easy

C# Interview Question and Answers:
Simplified

Azure Devops Interview Questions and
Answers

Angular 2021: Interview Questions and
Answers

C# Interview Questions and Answers :
Edition:2021

Web Api and Security: Interview Questions and
Answers : Edition:2021

	Copyrights
	About the Book
	Q1. What are Temporary tables?
	Q2. What are Temp variables?
	Q3. What is Table valued parameter (TVP)?
	Q4. Difference between Temporary variables and Temporary tables?
	Q5. What are Sub-Queries?
	Q6. What is a Common table expression (CTE)?
	Q7. What are Types of CTE?
	Q8. Difference between CTE and Temp Table?
	Q9. What is a Stored Procedure?
	Q10. How to optimize performance of stored procedure?
	Q11. Why Stored Procedures and not SQL queries?
	Q12. What are User Defined Functions (UDF)?
	Q13. What are Guidelines for creating a Function?
	Q14. What are types of Function?
	Q15. How function can return a table?
	Q16. Difference between Function and Stored Procedure?
	Q17. What are Views?
	Q18. What are advantages Views?
	Q19. What are disadvantages Views?
	Q20. Can we update table in Views?
	Q21. What are different types of Views?
	Q22. Difference between VIEWS and FUNCTIONS?
	Q23.Types of Joins?
	Q24. What are Indexes?
	Q25. What are Different ways to create Indexes?
	Q26. When Indexes should be avoided?
	Q27. What are benefits of Indexes?
	Q28. What are Types of Indexes?
	Q29. Difference between clustered and nonclustered Indexes?
	Q30. Difference between primary key and clustered index?
	Q31. Can we create clustered index on unique key?
	Q32. What is Partition By?
	Q33. Difference between GroupBy and Partition By?
	Q34. What are RANK, DENSE_RANK and ROW_NUMBER functions?
	Q35. Find 2nd Highest salary using DENSE_RANK ()?
	Q36. Query to delete duplicate data in table?
	Q37. Difference between Truncate and Delete?
	Q38. How to do Transaction and Rollback?
	Q39. What are Triggers?
	Q40. What are constraints available in Sql server?
	Q41. What is UNIQUE key Constraint?
	Q42. What is PRIMARY key Constraint?
	Q43. Can we create multiple primary key on a table?
	Q44. What is FOREIGN key Constraint?
	Q45. How to create a FOREIGN key Constraint?
	Q46. What is difference between PRIMARY and FOREIGN key constraint?
	Q47. Difference between varchar and nvarchar?
	Q48. What is Group By Clause?
	Q49. What is Having Clause?
	Q50. Write some Group By Queries?
	Q51. What is Union operator?
	Q52. What is UnionAll operator?
	Q53. What is COALESCE?
	Q54. Use of Substring and Charindex?
	Q55. What is STUFF() Function?
	Q56. What is an IDENTITY column?
	Q57. Difference between SEQUENCE and IDENTITY?
	About the Author
	More Books by this Author

